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ABSTRACT

a A search is undertaken for an object thought to be present with an

unknown probability, using a detection scheme whose efficiency is also

uncertain. After a certain interval, the search is called off, with the

object unfound; what are the posterior-to-experiment estimates of presence

and detection efficiency? It is shown that those two unknown quantities

interact in an interesting manner as the unsuccessful search goes on.
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A RANDOM SEARCH FOR A PROBABLE OBJECT

by

William S. Jewell

0. INTRODUCTION

Suppose that an object with certain distinct characteristics is thought

to be present in a given region or among a large group of similar objects.

At time zero, a search for this object begins, using equipment or procedures

whose detection efficiency is not known precisely. Then, after a certain

interval of time t , the search is called off, with the object unfound;

shall we say that the object was undiscovered because it was not actually

there in the first place, because the search time was inadequate, or because

C the search process was not efficient enough?

This type of problem occurs in software debugging, where an observed

error might be thought to be due to a bug in a particular portion of a pro-

gram, when in fact it is due to the operating system, the hardware, line

fluctuations, etc. Another similar situation occurs in quality control of

mass-produced parts, where the testing is done in batches; a test could

reveal that a defective part might exist in the batch, but in fact the pro-

cedure may not be precise enough to reveal just one defect. Another applica-

tion, of great topical interest, has to do with the recent incidents of

intrusion of territorial waters by foreign submarines.

Because this problem concerns the change between initial and post-

experimental perceptions of certain parameters, we use a Bayesian formulation,

whose analysis is straightforward, even under general assumptions about the

priors. However, the results are somewhat counter-intuitive, particularly

_7 when considered as functions of t ,because of the interactions between the
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different sources of uncertainty. This may account for some of the extended

discussion following the international incidents just mentioned.% ']

U 1. BASIC MODEL

For the basic model, we assume that, if the object exists at time zero

(event E) in the given region, then the random time until detection, ,

is given by an exponential law with parameter * . This is consistent with

various randomized search procedures in which the probability that an exist-

ing object, not found by time t , will be discovered in the next dt is

( dt) , independent of past history; it follows that:

Pr{ > t ]E, } e -  (t > 0)(i

Note that may be a characteristic of the target, the region of search,

the search procedures, the detection threshold of the equipment-observer

combination, or all of these. Thus, by an uncertain search efficiency, we

mean that the discovery rate is treated as a random quantity, * , with

known prior density, p(O)

Let w be the probability that the object is actually present at time

zero, so that Pr(E} - 1 -r ; again, our problematic attitude about E can

be reflected by making i a random quantity, with known prior density. p(n)

is determined by collateral measurements of the object's presence, "inside

information," expert opinion, external related events, and "other signs and

symptoms." It seems reasonable in most applications to make and T

independent, a priori.

If the search is called off at epoch t with the putative object

unfound, then we have an experiment in which the "data" is Dt - [ > t]

and it follows that the likelihood is simply:

%A-.

?. '.. .. .-,. - , . .. . -. , .-. . -. v .",.". "-•, """ ,'-,.,..= <...,' .",.,.," ,.", ."..'." ,".'." ."-"",'''.,,.''''....',%,
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Pr{VO iD , ¢. = (1 - T) + ne- t • (t > 0) (2)

Then, a simple application of Bayes' law will determine the posterior joint

density of the unknown parameters, p(n, I 1t with other quantities of

interest following from that. However, our final result can be better inter-

preted if we first consider two related elementary experiments.

2. ELEMENTARY EXPERIMENTS

Consider first a search in which the detection efficiency is very high,

or which has been in progress for a very long time. Thus, we know "for sure"

either that the object is present or not, that is, the datum is either E

or E ; this amounts to a Bernoulli experiment with one trial. Then, under

similar circumstances in the future, we would use a different prior on it

based upon the outcome of this trial. In other words, our prior would change

to either of:

p ) = (1- T) p(it) p(7 = P . (3)

- E{;} E{;)

Physically speaking, the outcome of this experiment reflects upon our

intelligence-gathering procedures, preliminary testing, or other means of

estimating nt

We can get some idea of the shift of opinion by examining the posterior

r " means :

E{ I } = E{;}n- V{;}/[l- E{;t}] ; E{;t E} E{;} + V{I/E(}

which shows that the amount of shift down (E) or up (E) is related to

the prior variance, V[7} In particular, if our prior opinion can be

F L.
"*" . . . . - .. . • - " . * ." * . - ' . - - .' • " . " . " ." - " " -, " " ' -" . " ., ' " "
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i
modelled by a Beta (a,B) density, then we know the posterior density is

closed under sampling, with p( r E) being Beta (a,6+l) , and p(ri E)

being Beta (c+l,B) . The posterior means are then:

E{ I ( E( } + 1)1(6 + 1) ; E{ I E} = 6 E{;}1(6 + 1)

where E{rr} = a/6 , and 6 = a + 8 represents the "strength" of prior opinion

(essentially the peakedness of the mode of p(7) ), relative to the experi-

mental outcome, in limiting shifting of the mean.

A contrasting simple experiment is one in which we know the object is

present, but once again search during an interval (0, t] and do not find

the object. The data from this experiment, = {(T > t)nE}, thus modifies
t

only our prior opinion about search efficiency, giving an updated posterior

density:

p( D) e-  p()/f(t) (4)

where the normalization

f(t) - Ele -;t) e-olt
e - p() do (5)

is the transform of p(o) . Thus this "failed" experiment shifts the mass

and moments of p(o) towards zero. In fact, it is easy to show that the

partial ordering

Vt (6)s t

holds for all 0 < s < t

Of particular interest is the behavior of mean posterior efficiency,

gotten by using asymptotic forms for f(t) and the convenient formula

=-d ln f(t)
t dt



For example, if t is small:

f(t) 1-E{f} t +E{ 2  /2- ... + ... (7)

assuming the indicated moments exist, we find that:

E D*} ,E{ } - V{ }t + ,,, (t 0) (8)t!

For large t , assume that p(*) has an analytic expansion at the origin:

00

P = P J/J!
j=j

with possibly the first few coefficients vanishing, say PO = Pl = '' '.J-I = 0

Then we have

f(t) p3 t - ( J + l ) + PJ+ t- (J+2) + " (t - -) (9)

so that the posterior mean vanishes with t as

E{ D} z (J+l)t + (pJ+i/Pj)t - 2 + (t -1 00) (10)

The reason we assume that the first non-zero coefficient might be J > 0

has to do with the moments of &- , which are of independent interest; for
~--1

example, the posterior mean of 4 is the expected remaining time until

discovery (see Section 3). Assuming E{O - I is finite, we find, similar to

(8) above:

[t~E ' 1 t -. + -. (t -0) (11)

and, assuming J > 1 :

_+- 1 + ... . (t + -) (12)

- -I".° ' -. '.°°. D--. ". J (.J.. . .. . z"-.'". "' . " ' *'" '4 . . ,. • , -, -a , ", °". ""."' " .' ."... -" .". .'."......... - :.:: :: :: ; ? ?;*Pi
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For more detailed information, we need to use a specific prior; a

convenient choice is the closed-under-sampling Gamma(c, d ) density, for

which f(t) = [I + (t/d)] - , and p($ D) is simply Gamma(c,d+t )

Then, for all t 0

t{ d + t I + (t/d)

and, assuming c > 1 :

I v t --} d= = E{, +  - (14)t c c

In words, we find for this simple experiment D that, where the object is
t

known to be present, our revised estimate of the mean rate of discovery is

dropping towards zero with increasing duration of non-discovery, or, equiva-

lently, that the mean remaining time until discovery is increasing without

limit with elapsed time, in the limit as a linear function of t . Inciden-

tally, this example, which holds for arbitrary c > I , shows that the

assumption of an analytic expansion about the origin is too strong, and that

J can be non-integer as well.

3. INTERPRETATION OF THE COMPOUND EXPERIMENT

Returning to the experiment in which both n and are uncertain,

we use (2) and the notation of the last Section to find the joint posterior

density:

p , 0 [1 - k(t)1 P(i E) P() + k(t) p(nr E) p(4 ) , (15)

which is seen to be a mixture of the two elementary experiments just analyzed.

The time-dependent mixing coefficient:

-,
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r ~t = E{nr f (t) - f f(t)

1-E{}I + E{;If (t) 1 + WAf (t) '(6

depends upon p(7) through the prior expected odds, w =E{rl/[l- E{}I)

and upon p(O) through f(t) = E{exp(-it)} . It is not difficult to show

that k(t) is monotone decreasing from E{;i} to zero as t goes from zero

to infinity; note that the first component in (15) never vanishes, nor does

the second component ever receive full weight.

Under the conditions described in the last Section, we find the limiting

approximations:

k(t) E[;)- E{w} 11 E{;})] E{'b} t + .. , (t-0) (17)

and

k(t) - t-(J+1) + p J+1 t_(J2 + *. ,(t - )(18)

where we henceforth assume J > 1 ~

Specifically, if p(O) is Gamma (c, d ),we find

k(t) = w/[w +(l + (t/d))c]

Figure 1 shows k(t) and 1- k(t) when E{1 = 0.75 (w =3:1) ,and p(4)

is Gamma(6,50) , so that Eft} 0.12 and E{o I = 10.0 .L

The effect of the model-mixing in (15) can be seen more clearly by

examining the posterior marginal densities. First, since

p (r D I~ =[ - k (t)] p(,T E)+ k (t) pi Or E)

we find that the posterior--to-V expectation of the probability that the

object was actually present is:
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-- 2E{rr i r = E{} E I { 2 } [1 - f(t)] (19)1 - E{t} [1 - f(t)]

It follows easily that this estimator decreases monotonically with t from

its prior expectation, E{r} , to the value E{7 I E} . Limiting forms are:

(E{I V{ E { } t + ... ... (t 0)

E; D ~ (20)

1E{ I + ______ -(t + (t .~

Figure 2 shows E{i D} for the Gamma-based f(t) used in Figure 1, and
t

for E{Tr} = 0.75 and E{3 E} 0.60 , obtained from p(n) being Beta(3,1).

The interesting part of this result is not the monotonicity with t

which is expected, but is the fact that the total decrease is so small in

most cases; in fact, only the fraction V{TrE{ } [1 - E{9}] of the original

estimate, E{7} , is lost when the search is called off after a very long

-1
time t . If p(7) is Gamma, this fraction is only (6 + 1) of the

original value; unless we make the extreme assumption that p(n) is

"dumbbell"-shaped, 6 must be larger than 2. The reason why (19) does not

vanish in the limit is discussed below in Section 5.

Turning now to the posterior behavior of $ , since

P(O ) = [1 - k(t)]p(4) + k(t) p( V )

we have a posterior mean efficiency of

I ='E( - E{} f(t) + df(t) j

[1 + W f(t)) (21)

+' i" -." '- ... .... " " "" .;......"."."..•."..'-..'.."...".-."..."".."."".."....".."-.".'....-...."... "".'.-"" '
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From the expansions of the last Section, we find:

(E{6} - E{ J Vf}t + (t -0

E{; D }  1. (22)

E{} - wE{p} p t-(J+l) + (t -

Thus we obtain the surprising result that. for most reasonable p( ) L

the posterior mean E{ D I O approaches the prior mean, E{} , for both

t small and large, usually with a unique minimal value in between!

For instance, with p(O) being Gamma(c,d), one can find that

KI [ w[l + (t/d)I l

1 + wl + (/d)]-c ]
*i

which is shown in Figure 3, using the same Gamma(6,50) used in Figure 1.

The minimal value of the posterior mean, which is down about 8.9% from the

initial and asymptotic value of E{O} = 0.12 , occurs at about t - 14

Also shown on the same plot is the corresponding plot of E{k I cI(d+t)
t /j

from (13).

The physical explanation for the shape of (21) is that, for small t ,

we at first think that non-detection implies that the detection rate should

be reduced, as in the simpler case with data V . However, at the samet

time, we are also reducing our expectation on , which puts more weight on

the hypothesis E ; under this hypothesis, there is no information about

to be obtained from the experiment! Therefore, as t gets very large, the

first term in the marginal posterior dominates, and the posterior mean

returns to E64}

. ............. ". " . .. ,-,,,"- , " ... , I ,< J ] i '_l
-6i~~~4k.: ~ ~ ~~r ON * .- ~*id**
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4. TOTAL DISCOVERY RATE

The total discovery rate may be defined as p = p , that is, (pdt)

is the probability that the object is found in (t, t + dt) , conditional

only on D " This concept is useful in making marginal decisions about

whether or not to continue the search, given the relative costs of continuing

to look and the value of finding the object. For example, if search costs

are c $/unit time, and the value of finding the object is V$ , both constant

over time, then the strategy which maximizes the expected net value is to

continue the search as long as E{p I V t} > c/V , if not yet found.

From previous formulae we find the mean discovery rate to be the cross-

moment of (15):

E{r} E{;} - E{w2I [E{0} - E{4 e-t (13)
p t 1 + E{Tr} 1-f(t)]

The asymptotic values are obtained in the same way as before, giving:

E{Irl E61} - E{;2 Eft~} [E{;T} Ef;}12 t + .. (t -0)

E{p D t } (24)

(E{T I E i W p J t-Jl + (t - ~

Both asymptotic value are expected, but what is interesting here is that the

average total discovery rate is not monotonic, but undershoots its final value!

This phenomenon is shown in Figure 4, using the same Beta-Gamma parameters

as in previous examples; this gives an undershoot of about 2.5% at about

t - 30 The cause of this phenomenon is the "recovery" of E{; I VD} with
t

t , since, if we knew € = "for sure," then E{P I Vt} would be
0 t

0 E{; I D)t , which we have already shown is monotone.
0'"

... . - ., . .. • . - - . - ., . . • . . ., . . . .. . .. - - - . . .-. .. . . . . o ; . "



5. CERTAIN VERSUS UNCERTAIN DISCOVERY

Many people who are willing to accept the somewhat counter-intuitive

behavior of E{4 I D t} and E6~ IVDt versus t are still bothered by the

non-vanishing of E{; D why don't we conclude that the object was not
t

present after a very long time of search? This is essentially related to

the conditions implied by DV and by V , and the related behavior of

If, in fact, the object were present (and we did not know it), then the

probability of actually observing V (i.e., not finding the object), with
t

t very large, would be vanisingly small. Nevertheless, if V ever occurs,

we must, in this idealized setup, always hedge our bets on this search (and

on all similar future searches). So we are not permitted to say the object

was for certain not present as t gets very large.

On the other hand, if, at some point during this experiment, supplementary

information on E is obtained, then of course we must revise the current

probabilities depending upon the credulity of the new knowledge. In particular,

if at time t we now know for certain that the object is present, then

becomes unity "for sure," and we would switch to p(4 D for the detection

rate. One can easily show that

for all t ,so that there is a discontinuity on our estimate of when

this new knowledge is acquired.

If E becomes certain at t ,it is also of interest to inquire what

the distribution of remaining time until discovery will be, call it Tt

- t Now,

Prr >u V* ehouIt t'

% - - -* -0 -.. . . -

. 4 0 _ _ _ _ . ; :: . 0 ; : . ~ : ) : : . ~ : : 5 : . ~ .x~%K
-~ .- <~. * ~ 0%
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IF*

for all t , according to (1). On the other hand, p( I D) does depend

upon t through the equation before (21), so we find the survival law:

PrIr > u t = f(t) (26)
IEet I I ti f(t+)

This gives a new interpretation to the transform f as the tail distribution

function of T = T

The fact that a transform is log-convex also gives the interesting

result that I ' T ' MT for all 0 < s < t . Or, in words, even though

it is known that the object is present, the longer the object remains unfound,

the longer remaining time, on the average, it will take to find it (assuming

p(o) is not concentrated at a single point). A most discouraging outcome!

For example, if p(¢) is Gamma(c, d), then

PTrt > tu f 1 + (t/d)Pr > D
t ~tK [1l+((t+ u)/d)J

Of course, E{T D E{ 1 J V} , as given in (14).
t t t

One could also define a remaining time until detection in the more general

case, where either E or E may obtain, by writingI D ; +(

giving, formally:

Pr > u o = ~ v +E{ I r [f(u) - f(t + U)]+ft+)
P t  1$ + W f(t)"

The first term is the defect, reflecting the mass at T .
t %,

t~rs "., ' " i'w,' ." '. ..".. ',., " ,', " '- ',. ", , 2.'. .. I ' ' ' ,., " '--,"','" ",'.', '": ,'"":-','""2', .. , ' '"",I
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6. CONCLUDING REMARKS

This model can be generalized in several different ways, For example,

in certain kinds of intermittent electronic failure problems, the bug is

actually "present" or "not present" for alternating intervals that depend

upon non-observable externalities; the prior would require hypothesizing

where in this cycle the search begins. Similar models arise if the detec-

K:. tion efficiency varies randomly between several different levels, as in

various communications problems. In intrusion detection, the target may

actually be able to detect the search effort and take evasive action, or

leave the region; this requires modelling the time until the object has left,

given it was originally present.

In summary, we have found that the original uncertainties about an

object's presence and our detection abilities interact in an interesting way

as time elapses with the object unfound, In particular, posterior estimates

of these uncertainties may be non-mnonotonic with the non-detection interval.
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